Dehydration of liqors is useful since readily converted to an liqor to an alkene. A simple example is the synthesis of cyclohexene by dehydration of cyclohexanol. You can see the action of acid (H2SO4) sulfuric acid which removes the hydroxyl group of liqor, generating the double bond and water (alcohol assessment). The hydroxyl is replaced by a halogen in Appel reaction. Many liqors may be created by fermenting yeast fruit or grain, but only ethanol is produced commercially this way, mainly as a fuel and as a beverage. Other liqors are generally produced as synthetic derivatives of natural gas or oil.
The liqors may be primary, secondary or tertiary, depending on the number of hydrogen atoms substituted on the carbon atom to which they are bound to hydroxyl group. The liqor comes from the Arabic wordof al (determinant) and kuhul meaning 'subtle'. This is because formerly called "spirit" to liqors. For example, "spirits" to ethanol, and "wood spirit" to methanol.
On the other hand, oxygen has two unshared pairs of electrons so that the hydroxyl could be protonated, although in practice this leads to a very weak base, so that for this process to occur, it is necessary to deal with an acid to liqor very strong. For chlorinated or brominated liqors, should take into account the following considerations. Primary liqor: primary liqors react very slowly. As can not form carbocations, activated primary liqor remains in solution until it is attacked by chloride ion. With a primary liqor, the reaction can take thirty minutes to several days. Secondary liqor: secondary liqors take less time, between 5 and 20 minutes, because side carbocations are less stable than tertiary.
Lavoisier was the one who revealed the origin and how to produce liqor through the wine fermentation, showing that under the influence of yeast grape sugar is converted into carbonic acid and liqor. He was also studied by Scheele, Gehle, Thenard, Duma and Boullay Berthelot and in 1854 won it for sintesis.
If it is not the main function, add the prefix hydroxy- preceded by the carbon atom number where the group is attached. For the conjugate base of liqor, liqorate ion, just replace the terminal vowel "e" by -olate suffix (not to be confused with the suffix -oate characteristic of carboxylate, conjugate base the carboxylic acid).
Primary liqor: pyridine (Py) is used to stop the reaction to aldehyde CR03 / H plus is called Jones reagent, and a carboxylic acid is obtained. Secondary liqor: secondary liqors take less time, 5 to 10 minutes because the secondary carbocations are less stable than tertiary.
Tertiary liqor: although resist being oxidized with mild oxidizing, if an energetic as potassium permanganate is used, tertiary liqors are oxidized products giving as a ketone with a number less carbon atoms, and methane is released .
The fact that the hydroxyl group can also form hydrogen bonds affects the melting and boiling points of liqors. Although the hydrogen bond formed is very weak compared to other types of bonds are formed in large numbers between molecules, forming a collective network which hinders the molecules can escape the state in which they are (solid or liquid), thus increasing their melting and boiling points compared to corresponding alkanes. Furthermore, two points are usually far apart, so are often used as components of antifreeze mixtures. For example, 1,2-ethanediol has a melting point of -16 degrees C and a boiling point of 197 degrees C.
The liqors may be primary, secondary or tertiary, depending on the number of hydrogen atoms substituted on the carbon atom to which they are bound to hydroxyl group. The liqor comes from the Arabic wordof al (determinant) and kuhul meaning 'subtle'. This is because formerly called "spirit" to liqors. For example, "spirits" to ethanol, and "wood spirit" to methanol.
On the other hand, oxygen has two unshared pairs of electrons so that the hydroxyl could be protonated, although in practice this leads to a very weak base, so that for this process to occur, it is necessary to deal with an acid to liqor very strong. For chlorinated or brominated liqors, should take into account the following considerations. Primary liqor: primary liqors react very slowly. As can not form carbocations, activated primary liqor remains in solution until it is attacked by chloride ion. With a primary liqor, the reaction can take thirty minutes to several days. Secondary liqor: secondary liqors take less time, between 5 and 20 minutes, because side carbocations are less stable than tertiary.
Lavoisier was the one who revealed the origin and how to produce liqor through the wine fermentation, showing that under the influence of yeast grape sugar is converted into carbonic acid and liqor. He was also studied by Scheele, Gehle, Thenard, Duma and Boullay Berthelot and in 1854 won it for sintesis.
If it is not the main function, add the prefix hydroxy- preceded by the carbon atom number where the group is attached. For the conjugate base of liqor, liqorate ion, just replace the terminal vowel "e" by -olate suffix (not to be confused with the suffix -oate characteristic of carboxylate, conjugate base the carboxylic acid).
Primary liqor: pyridine (Py) is used to stop the reaction to aldehyde CR03 / H plus is called Jones reagent, and a carboxylic acid is obtained. Secondary liqor: secondary liqors take less time, 5 to 10 minutes because the secondary carbocations are less stable than tertiary.
Tertiary liqor: although resist being oxidized with mild oxidizing, if an energetic as potassium permanganate is used, tertiary liqors are oxidized products giving as a ketone with a number less carbon atoms, and methane is released .
The fact that the hydroxyl group can also form hydrogen bonds affects the melting and boiling points of liqors. Although the hydrogen bond formed is very weak compared to other types of bonds are formed in large numbers between molecules, forming a collective network which hinders the molecules can escape the state in which they are (solid or liquid), thus increasing their melting and boiling points compared to corresponding alkanes. Furthermore, two points are usually far apart, so are often used as components of antifreeze mixtures. For example, 1,2-ethanediol has a melting point of -16 degrees C and a boiling point of 197 degrees C.
About the Author:
Our chemical dependency treatment programs are exclusively planned for adult outpatients. To learn more about our alcohol assessment services, don't be shy to check out this web page at http://www.sixdimensionscounseling.com.
No comments:
Post a Comment